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Project Overview

The overall goal of the project is to leverage robust graphical 

learning and PMU data to learn the dynamic interactions of 

electrical grid components in order to improve the power system 

resilience. Specifically, this project incorporates four objectives:

1) Massive PMU data preparation, refining, and real-time visualization and 

access.

2) Identifying and cataloguing anomalous patterns.

3) Learning interaction graphs using deep graph neural networks.

4) Graph-based modeling, monitoring, and mitigation of cascading outages.
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Project Overview

Project Partners

• This project is a synergistic 

collaborative project between Iowa 

State University, IBM, EPG, and 

Google Brain. 

Technical Approach

• Our team members will leverage 

the team’s extensive experience 

Project Impact
• The findings of this project, including anomalous event classification, dynamic 

interaction graphs, and pattern signature catalogue, will be integrated on the IBM AI 

OpenScale platform and will be publicly accessible to the wider users and system 

operators for implementation in future online and offline applications.

and state-of-the-art algorithms in machine learning, big data analytics, and synchro

-phasor data commercial tools, and cascading failure modeling.

Fig. 1 Project objective overview.
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Project Overview

Task

Number
Task Title Progress Summary

Completion

Date

Planned Actual

1.1 Project Management Plan (PMP) PMP was submitted to DOE and approved by the project manager. 10/30/19 10/30/19

1.2
National Environmental Policy Act 

(NEPA) Compliance
The documentation was prepared and provided for NEPA. 10/30/19 10/30/19

1.3 Data Management Plan (DMP) The Data Management Plan (DMP) was prepared and submitted to the DOE. 10/30/19 10/30/19

1.4
Non-Disclosure Agreement for 

PNNL and IBM

The Non-Disclosure/Data Handling Agreements have been signed with IBM and 

Pacific Northwest National Laboratory (PNNL) and submitted to the DOE.
10/30/19 10/30/19

2.1 PMU Data Importing and Storage

A SATA hard drive docking station and ISU server have been used for data 

importing and storage. 4 external hard drives have been utilized to establish local 

data backup.

10/31/19 10/31/19

2.2
PMU Data Real-Time Access and 

Visualization

A secure connection has been established between local computers and the server 

through PuTTY software tools to access datasets. Microsoft Power BI has been used 

for data visualization and statistical analysis.

11/30/19 11/30/19

2.3
PMU Data Formatting, Validation, 

and Conditioning

We have decomposed the available PMU dataset into training, validation, and testing 

sets to: 1) design robust learning-based PMU event identification method, 2) learn 

the interaction graphs from PMU data. EPG’s software have been used to provide an 

assessment of PMU Data Quality for the whole dataset 

12/31/19 12/31/19

3.1
Building Deep Graphical Neural 

Networks

We have designed an architecture of interaction graph learning model based on the 

guidance of IBM.
03/31/20 03/31/20

3.2 FastGCN-Based DNRI Training
The random search and k-fold cross validation strategies have been used to tune the 

hyperparameter of our graph learning algorithm.
05/31/20 05/31/20

3.3
Graph Visualization and 

Interpretation
06/30/20
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Project Overview

Task

Number
Task Title Progress Summary

Completion

Date

Planned Actual

3.4 Interaction Graph Validation 06/30/20

4.1
High-Risk Operational Condition 

Detection
09/30/20

4.2
Visualization and Prediction of 

Cascading Outage Propagation
10/31/20

4.3 Cascading Mitigation Strategy Design 11/30/20

4.4 Comparison of Methods 12/31/20

5.1 Graphical Anomaly Detection

We have developed a robust learning-based two-stage event identification based on 

our PMU dataset. The interaction graph will be integrated with this model to further 

improve the classification accuracy.

10/31/20

5.2 Event Signature Extraction 11/30/20

5.3 Disturbance Analysis Validation 12/31/20

6.0
Validation with Commercial Software 

Tools
03/12/21

6.1 Offline Benchmarking Analysis 03/12/21

6.2 Online Validation and Testing 03/12/21

7.1 Module Integration 01/31/21

7.2
Building an Open-source Platform for 

Project Findings
03/12/21

8.0
Publications, Presentations, Final 

Briefings and Reports to DOE
03/12/21
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Experimental Results

Data Importing and Storage (Task 2)
• A ISU server, which has 256GB RAM 

memory, 22TB hard drive, and 2 – 10 core 

Xeon CPU E5-2660 v3 @ 2.6GHz, has been 

utilized to import and store massive PMU 

data. 

• 4 external hard drives have been utilized to 

establish local data backup to protect data 

against server-level failures
Fig. 2 ISU server.

Data Visualization (Task 2)
• Power BI has been used to perform data 

visualization by developing dashboards.

• Our dashboards contains statistical 

information for all three systems and 

selected event curves.
Fig. 3 Power BI dashboard.
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Experimental Results

PMU Data Quality Assessment (Task 2)

• Good quality PMU data is essential in online and offline applications. We have 

utilized EPG commercial software (i.e., DataNXT, PGDA) to assess the data quality 

of the PMU dataset based on PMU status flags. 

Interconnection A Interconnection B Interconnection C

Number of PMUs 212 43 188

Reporting Rate (samples/sec) 30 30, 60 30

Voltage Levels (kV) 69, 138, 345 230, 345, 500
115, 138, 161, 230, 345, 500, 

765

Data Duration
2018 (July – Dec)

2019 (Jan – Aug)

2016 (Jan – Dec) 

2017 (Jan – Dec)

2016 (Jan – Dec)

2017 (Jan – Dec)

No. of Data Files 2576 4365 10496

Data Size 3TB 5TB 12TB

No. of Events 29 4854 1884

No. of Unidentified Events 0 0 634

PMU Data and Event Logs Summary (Task 2)
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Experimental Results

PMU Data Quality Assessment - Overview (Task 2)

Fig. 4 System A data quality pie chart.

Fig. 5 System B data quality pie chart for 

PMUs with 30 samples/sec (above) and for 

PMUs with 60 samples/sec (below).

Fig. 6 System C data quality pie chart.
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Experimental Results

PMU Data Quality Assessment – System A (Task 2)

Fig. 7 Overall data quality for each PMU in system A.
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Experimental Results

PMU Data Quality Assessment – System A (Task 2)

Fig. 8 Overall data quality analysis for total 18 signals of each PMUs in system A.
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Experimental Results

PMU Data Quality Assessment– Statistical Analysis (Task 2)

To provide more details about PMU data quality, we have defined and plotted two survival functions, 

𝑆 𝑘 and 𝑆 𝑐 :

𝑆 𝑘 = Pr{
number of missing data per PMU per day

total number of data per PMU per day
> 𝑘}

𝑆 c = Pr{number of consecutive missing data > 𝑐}

• Based on the left figure, PMUs show data quality issues more than 30% of time.

• Based on the right figure, around 3% of data quality issues have more than 10 consecutive bad 

data.

Fig. 9 Survival function 𝑆 𝑘 using PMU dataset . Fig. 10 Survival function 𝑆 𝑐 using PMU dataset .

(1)

(2)
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Technical Progress

• Based on our data quality assessment, PMU data quality problems are 

inevitable and not rare, which can disjoint the dimensional consistency of data 

samples between the offline training and online testing. Poor robustness 

against data quality makes the PMU-based event identifiers not sufficiently 

convincing [1]. 

• Machine learning-based methods typically suffer from event data scarcity, 

resulting in a data imbalance problem [2].

• Most of the signal processing-based methods require massive computations 

due to the complicated mathematical transformation and optimization, which 

might challenge the practical deployment of the methods [3].

Challenges of Developing PMU-Based Event Identifiers (Task 3 & 5)
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Technical Progress

Robust Two-Stage Learning-Based Real-Time Event Identification

Fig. 11 Illustration of two-stage event identification.

• The first stage is Markov-based 

time-series feature reconstruction to 

capture the time-varying statistical 

characteristics of PMU data.

• The second stage is spatial pyramid 

pooling (SPP)-aided convolutional 

neural network (CNN)-based mode 

to identify event types. 

• One unique advantage of the proposed method can allow the signals of 

arbitrary dimensions during online testing, thus introducing robustness 

against online data quality issues.
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Technical Progress
PMU Data Extraction & Cleaning 

• To apply PMU-based event identifiers in real-time, a 2-second analysis-

window is selected to extract the event data based on the event logs.

• We use the voltage magnitude and frequency variation data from each PMU to 

train our learning model.

• For each PMU, the event data is re-sorted based on time stamps.

• Following our data quality assessment, when the consecutive missing/bad data 

occurs, the data is excluded from our study.

• The rest of the missing/bad data are filled and corrected by taking an average 

of the two preceding samples.
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Technical Progress

Stage I: Markov-Based Time-Series Feature Reconstruction  

• A Markov matrix-based method known as Markov Transition Filed (MTF) is 

adopted to encode the temporal dependency and transition statistics of PMU data 

in a compact metric [4].

• The goal of the stage I is to improve the event classification accuracy by 

performing feature reconstruction. 

• MTF is applied to the event dataset including voltage magnitudes and frequency 

variations to obtain the MTF-based graph set, which are used for training a 

learning model in the stage II.

Fig. 12 Illustration of the proposed encoding map of MTF.
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Technical Progress

Stage II: SPP-Aided CNN-Based Event Identifier 

Fig. 13 Proposed SPP-aided CNN-based event classifier.

• Constructing an end-to-end mapping 

relationship between MTF-based graphs and 

the event types.

• Including multiple convolutional, batch 

normalization, max-pooling. SPP, and the fully-

connected layers.

• Introducing robustness to data quality problems 

during online testing by eliminating the fixed-

size input requirement of CNNs [5]. 
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Technical Progress

Numerical Results Using the Data of System B 

Fig. 14 Training/testing results for the proposed model.

Fig. 15 Confusion matrix using the proposed model.Fig. 16 Sensitivity of event identification accuracy to the 

size of missing data.
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Technical Progress
Similar to traffic network and stocks, power systems are complex networks of 

interdependent components with interactions. (Task 3 & 5)

Power Grid

Traffic Network Stocks
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Technical Progress

Missing Relations (Task 3 & 5)

Power Grid

Traffic Network Stocks

Only sensors 

without network

Relations between 

companies are missing

Topology is missing & 

interdependency between 

PMUs are unknown
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Technical Progress

Learning Interaction Graphs using GNNs (Task 3 & 5)

Power Grid is an 

interdependent network.
Goal: 

• Explicitly learn the pairwise interactions in 

the form of a graph based on PMU data and 

use it to further improve event classification 

accuracy.

• Simultaneously optimize the graph learning 

and event classification tasks.
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Technical Progress

Proposed Spatial GNN-Based Event Identifier (Task 3 & 5) 

Fig. 17 Spatial GNN-based event identifier.

GNN model
Classification 

model
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Future Effort
Remaining Tasks and Schedule

• Graphical Cascading Failure Modeling, Monitoring, and Mitigation (Task 

4): The possible cascading failure data will be extracted to develop a PMU-

based influence graph for monitoring and mitigating cascading outages. 

• Interaction Graph-based Event Identifier (Task 5): The proposed spatial 

GNN-based event identifier will be validated using our PMU dataset. 

• Unidentified Event Extraction (Task 5): We will utilized a unsupervised 

graphical data clustering method to extract and catalogue unidentified events.
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Future Effort
Remaining Tasks and Schedule

• Event Identification using Poor Event Logs (Task 5): We will developed a 

novel event identification model to mitigate the challenge of event data 

scarcity using recent semi-supervised machine learning technique.

• Offline Benchmarking Analysis (Task 6): EPG’s commercial software such 

as PGDA or AEM will be used to compare with the proposed learning-based 

method in identifying anomalous events.

• Integration with Open Source Platform (Task 7): The resulted deep learning 

models will be deployed as a service on big data platform such as IBM AI 

OpenScale
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